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ABSTRACT— Now a days, analyzing the large and 

unstructured data is a difficult task in many data sharing 

and processing areas. To process the large datasets or 

large data we have a most popular paradigm i.e 

MapReduce paradigm. A MapReduce workload generally 

includes a hard and fast of jobs; each of jobs consist of a 

couple of map and reduce tasks. To improve the 

performance of the MapReduce workloads, we want to 

beautify the makespan in addition to general final touch 

time of the MapReduce. In this paper, author has used two 

algorithms which are based on Johnson’s Rule, to 

enhance the performance for MapReduce workloads with 

job ordering and slot configuration optimization 

approaches. The proposed algorithms are: one for 

optimizing the makespan by dynamic job ordering and 

another for reducing the total completion time of the 

MapReduce by slot configuration. By using the proposed 

algorithms, we can optimize or mitigate the makespan of 

the MapReduce and also we can mitigate the total 

completion time for the MapReduce workloads. 

Keywords: MapReduce, Clusters, Job Ordering, Slot 

Configuration, Makespan 

1. INTRODUCTION 

1.1 Introduction about MapReduce 

The MapReduce programming model has been developing 

dramatically in reputation for some of years now [1], [2], 

[4], [5]. There are many motives for this success, most are 

associated with MapReduce’s inherent simplicity of use, 

even when carried out to massive applications and 

installations. For example, a MapReduce is designed to  

parallelized routinely. It can be carried out on huge clusters 

of commodity hosts, and it inherently scales well. 

Scheduling, fault tolerance and essential communications 

are all treated robotically, without direct consumer help. 

Finally and possibly most significantly, the programming of 

MapReduce programs is surprisingly directly-ahead and 

thus appropriate for much less state-of-the-art programmers. 

These blessings, in turn, bring about lower prices [14]. 

Originally MapReduce aimed at large (typically periodic) 

production batch jobs. As such, the herbal goal would be to 

reduce the duration of time required for a batch window. 

The MapReduce version can be used for predicting the 

finishing touch time of the Map and Reduce levels as a 

feature of the enter dataset size and allocated sources. Here, 

we take into account Map and Reduce two levels wherein 

Map level consists of time for activity set-up, splitting, 

mapping to supply (key, price) pairs and Reduce level 

includes time for combining, sorting, shuffle and producing 

final outputs [13], [15]. 

Originally, Hadoop hired an easy FIFO scheduling coverage 

[6], [7], [8], [1], [11] designed with an aim of minimizing 

the makespan of massive mechanically finished batch 

workloads. However job management the usage of this 

policy could be very rigid: once long, manufacturing jobs 

are scheduled within the MapReduce cluster the later 

submitted brief, interactive adhoc queries have to wait until 

the earlier jobs end, which could make their results much 

less relevant. The Hadoop Fair Scheduler (HFS) solves this 

hassle by enforcing a few fairness on few of the jobs and 

making sure that every job at least gets a predefined 

minimum of allocated slots. While this technique lets in 

sharing the cluster amongst multiple customers and their 

programs, HFS does no longer offer any guide or manage of 

allotted assets with a purpose to achieve the utility overall 

performance desires and storage level targets (SLOs). In 

MapReduce environments, many manufacturing jobs are run 

periodically on new information. For example, Facebook, 

Yahoo!, and eBay system terabytes of statistics and event 

logs in step with day on their Hadoop clusters for 

unsolicited mail detection, business intelligence and 

different sorts of optimization. 

1.2 Job Execution MapReduce 

MapReduce jobs are dispensed and done over more than one 

machines: the map stage is partitioned into map tasks and 

the reduce tasks is partitioned into reduce jobs [1].  
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Fig1. MapReduce Execution flow under    different job 

orders 

Each map task processes a logical split of the input 

information that generally resides on a distributed file 

system. The map task applies the person-defined map 

feature on every record and buffers the resulting output. 

This intermediate statistics is hash-partitioned for the 

exceptional reduce tasks & written to the local hard disk of 

the worker executing the map task. The reduce stage 

consists of 3 phases: shuffle, sort and reduce phase. In the 

shuffle phase, the map responsibilities fetch the intermediate 

data documents from map tasks, thus following the “pull” 

model [3]. In the sort phase, the intermediate documents 

from all of the map tasks are taken care of. An outside 

merge type is utilized in case the intermediate records do no 

longer match in reminiscence. After all the intermediate 

facts are shuffled, a final skip is made to merge a lot of 

these looked after files. Thus, the shuffle and type stages are 

interleaved. Finally, within the map phase, the sorted 

intermediate facts (within the form of a key and all its 

corresponding values) is exceeded to the consumer-defined 

reduce characteristic. The output from the map 

characteristic is usually written again to the dispensed 

record machine [1]. In fig1, the nonoverlap computation 

constraint between map and reduce tasks of a MapReduce 

job, ensuing in special aid utilizations for map/lessen slots 

below exclusive job submission orders for batch jobs. 

Job scheduling in Hadoop is performed with the aid of the 

task master, which manages some of employee nodes inside 

the cluster. Each employee has a set wide variety of map 

and reduce slots, that can run responsibilities. The variety of 

map and reduce slots is statically configured (commonly to 

1 or in keeping with middle). The people periodically ship 

heartbeats to the master to report the wide variety of free 

slots and the development of the responsibilities that they're 

currently running. Based at the availability of unfastened 

slots and the rules of the scheduling coverage, the grasp 

assigns map and reduce tasks to slots inside the cluster [10], 

[1], [12]. 

2. RELATED WORK 

While MapReduce has demonstrated a prevalent execution 

display for expansive cluster analysis, as of late, numerous 

associations have begun to share their MapReduce (Hadoop) 

groups among various clients, which run a blend of bunch 

and short intuitive employments [3]. To empower this 

utilization display, Matei Zaharia, Dhruba Borthakur, 

Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker and 

Ion Stoica have proposed FAIR [2], a reasonable scheduler 

that gives disengagement, ensures a base offer to every 

client (work), and accomplishes measurable multiplexing. 

Amid its underlying arrangement, we have distinguished 

two parts of MapReduce-information: region and errand 

relationship-which extensively hurt FAIR's throughput. To 

address this issue they have created two basic yet hearty 

procedures: postpone booking and duplicate process part. 

Utilizing a wide cluster of examinations they have 

demonstrated that FAIR accomplishes disconnection, low 

reaction time, and high throughput.  

Abhishek Verma, Ludmila Cherkasova and Roy H. 

Campbell [3], considered the issue of finding a calendar that 

limits the general culmination time of a given arrangement 

of autonomous MapReduce occupation. They composed a 

novel system and another heuristic, called Balanced Pools 

that effectively use attributes and properties of MapReduce 

occupations in a given workload for developing the 

streamlined activity plan. As of now, they are assessing this 

heuristic with a wide range of MapReduce workloads to 

quantify achievable execution picks up. Information 

investigation errands are frequently determined with more 

elevated amount SQL-type reflections like Pig and Hive [5], 

which may bring about MapReduce employments with 

conditions.  

Parag Agrawal, Daniel Kifer and Christopher Olston [4], [9] 

examined how to plan occupations that can share look over 

a typical arrangement of info documents. The objective is to 

amortize costly document checks crosswise over numerous 

occupations, however without excessively harming singular 

employment reaction times. Their approach constructs a 

straightforward stochastic model of employment entries for 

each info document, and considers foreseen future 

occupations while planning employments that are right now 

enqueued. The main idea of authors is: if an enqueued job J 

requires checking a big size file F, and forecast the close 

term access of extra jobs that likewise check F, at that point 

it might made sense to delay J if job J has not already in 

queue too long and other, less sharable, occupations are 

accessible to run. They formalized the issue and determined 

a basic and compelling booking approach, under the target 

of limiting apparent hold up time (PWT) for culmination of 

client occupations. 

3. FRAMEWORK 

3.1 Overview of the Proposed System 

The main aim of this paper is to improve the performance of 

the MapReduce workload by minimizing the makespan as 
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well total completion time. Here, the makespan and total 

completion time both are the performance metric for the 

MapReduce workloads. 

 

Fig2. MapReduce jobs execution in a cluster by 

Makespan_ Johnson Rule (MK_JR) 

These two metrics are performed based on Johnson Rule 

(JR) as shown in figure 2. 

Makespan: 

The definition of makespan is that the time period for the 

first process until the  completion of the closing activity for 

a hard and fast of jobs. It considers the computation time of 

jobs and is often used to degree the overall performance and 

utilization performance of a system.  

Total Completion Time: 

The general final touch time is called the sum of finished 

time durations for all jobs for the reason that begin of the 

first job. It is a generalized makespan with queuing time 

(i.e., waiting time) protected. We can use it to degree the 

delight to the gadget from a unmarried process’s perspective 

thru dividing the full final touch time by the number of jobs 

(i.e., average final time). 

To optimize the makespan and total completion time, we 

proposed two algorithms such as; 

1. Optimized Job Ordering algorithm 

2. Optimized Job Ordering and Slot Configuration 

algorithm 

3.2 Optimized Job Ordering Algorithm     

      (MK_SF_JR) 

Inputs:  

MapReduce workloads (jobs), Map slots, reduce 

slots 

Output: 

 Optimized job submission order 

Procedure: 

1. Estimate the map-phase processing time and reduce-

phase processing time of each job 

2. To order the jobs, partition the job set into two subsets 

such as, J1 and J2 

3. Here, J1 = (Processing time of Map-phase < Processing 

time of Reduce-phase) and J2 = (Processing time of 

Map-phase > Processing time of Reduce-phase) 

4. Order all jobs into job set, using increasing and 

decreasing order based on condition of job sets. 

5. Make all optimized ordered job set 

6. Estimate the makespan of all slots of Map and Reduce 

7. Compare estimated makespan with mini-makespan 

8. If (mini-makespan>makespan) then makespan = mini-

makespan 

Output: Optimized Makespan with submission order 

Given a MapReduce workload and the total number of slots, 

an sensitive method is to search & evaluate all combinations 

of job submission orders & map/reduce slot configurations 

exhaustively, as shown in Algorithm. It produced the 

optimal execution plan for makespan optimization. 

This algorithm can produce the minimized makespan with 

ordered jobs. To get the optimized makespan, we have to 

estimate the makespan with minimized makespan and after 

that we can compare the  makespan values. If (mini-

makespan>makespan) then makespan = mini-makespan. 

3.3 Optimized Slot Configuration and Job     

     Ordering Algorithm(MK_TCT_SF_JR) 

 

Inputs:  

MapReduce workloads (jobs), Map slots, reduce 

slots 

Output: 

 Optimized job submission order with slot 

configuration 

Procedure: 

9. Estimate the map-phase processing time and reduce-

phase processing time of each job 

10. To order the jobs, partition the job set into two subsets 

such as, J1 and J2 

11. Here, J1 = (Processing time of Map-phase < Processing 

time of Reduce-phase) and J2 = (Processing time of 

Map-phase > Processing time of Reduce-phase) 
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12. Order all jobs into job set using increasing and 

decreasing order based on condition of job sets. 

13. Make all optimized ordered job set 

14. Estimate the makespan of all slots of Map and Reduce 

15. Estimate (Makespan, total completion time (TCT)) of 

map and reduce 

16. Compare estimated makespan with mini-makespan 

17. If (mini-makespan>makespan) then makespan = mini-

makespan 

18. TCT = Mini-TCT 

Output:  Optimized job submission order with slot 

configuration 

The above slot configuration rule is a bi-criteria 

optimization algorithm for makespan and total completion 

time with considerion for slot configuration optimization. 

This algorithm optimizes two metrics named as makespan 

as well as total completion time simultaneously for those 

workloads which contains lots of small jobs. 

4. EXPERIMETAL RESULTS 

We evaluate our algorithms with the average execution time 

for map and decrease tasks. Particularly, we validate that it 

is suitable for using average execution time in our 

algorithms by means of showing that the impact of various 

venture execution time is minor. For each process, we 

estimated its average project execution time. 

 

Fig3. Makespan speedup under different     number of 

jobs 

For makespan (or general total time), we normalized it by 

the usage of makespan speedup (or total completion time 

speedup), defined as the ratio of makespan (or overall 

finishing touch time) from the unoptimized case to that from 

the targeted activity order. Therefore, the larger speedup 

shows the better overall performance for the detailed job 

order as shown in fig.3. 

 

Fig4. Total completion time speedup under different 

number of jobs 

Moreover, there is a slight drop in makespan speedup for 

MK_TCT_JR in comparison to MK_JR, sacrificing a bit 

performance improvement in makespan for a good total 

completion time as shown in fig4. We can observe the total 

completion time of the different mapreduce workloads. 

5. CONCLUSION 

We conclude that in this paper, we proposed job ordering 

optimization algorithm & MapReduce slot configuration 

optimization algorithm. We observed that full of completion 

time may be terribly difficult to get the most suitable 

makespan, consequently, we further suggest a new greedy 

process ordering set of rules and a map/lessen slot 

configuration set of rules to limit the makespan and total of 

completion time collectively. 
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