
© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 118

ABSTRACT— Now a days, analyzing the large and

unstructured data is a difficult task in many data sharing

and processing areas. To process the large datasets or

large data we have a most popular paradigm i.e

MapReduce paradigm. A MapReduce workload generally

includes a hard and fast of jobs; each of jobs consist of a

couple of map and reduce tasks. To improve the

performance of the MapReduce workloads, we want to

beautify the makespan in addition to general final touch

time of the MapReduce. In this paper, author has used two

algorithms which are based on Johnson’s Rule, to

enhance the performance for MapReduce workloads with

job ordering and slot configuration optimization

approaches. The proposed algorithms are: one for

optimizing the makespan by dynamic job ordering and

another for reducing the total completion time of the

MapReduce by slot configuration. By using the proposed

algorithms, we can optimize or mitigate the makespan of

the MapReduce and also we can mitigate the total

completion time for the MapReduce workloads.

Keywords: MapReduce, Clusters, Job Ordering, Slot

Configuration, Makespan

1. INTRODUCTION

1.1 Introduction about MapReduce

The MapReduce programming model has been developing

dramatically in reputation for some of years now [1], [2],

[4], [5]. There are many motives for this success, most are

associated with MapReduce’s inherent simplicity of use,

even when carried out to massive applications and

installations. For example, a MapReduce is designed to

parallelized routinely. It can be carried out on huge clusters

of commodity hosts, and it inherently scales well.

Scheduling, fault tolerance and essential communications

are all treated robotically, without direct consumer help.

Finally and possibly most significantly, the programming of

MapReduce programs is surprisingly directly-ahead and

thus appropriate for much less state-of-the-art programmers.

These blessings, in turn, bring about lower prices [14].

Originally MapReduce aimed at large (typically periodic)

production batch jobs. As such, the herbal goal would be to

reduce the duration of time required for a batch window.

The MapReduce version can be used for predicting the

finishing touch time of the Map and Reduce levels as a

feature of the enter dataset size and allocated sources. Here,

we take into account Map and Reduce two levels wherein

Map level consists of time for activity set-up, splitting,

mapping to supply (key, price) pairs and Reduce level

includes time for combining, sorting, shuffle and producing

final outputs [13], [15].

Originally, Hadoop hired an easy FIFO scheduling coverage

[6], [7], [8], [1], [11] designed with an aim of minimizing

the makespan of massive mechanically finished batch

workloads. However job management the usage of this

policy could be very rigid: once long, manufacturing jobs

are scheduled within the MapReduce cluster the later

submitted brief, interactive adhoc queries have to wait until

the earlier jobs end, which could make their results much

less relevant. The Hadoop Fair Scheduler (HFS) solves this

hassle by enforcing a few fairness on few of the jobs and

making sure that every job at least gets a predefined

minimum of allocated slots. While this technique lets in

sharing the cluster amongst multiple customers and their

programs, HFS does no longer offer any guide or manage of

allotted assets with a purpose to achieve the utility overall

performance desires and storage level targets (SLOs). In

MapReduce environments, many manufacturing jobs are run

periodically on new information. For example, Facebook,

Yahoo!, and eBay system terabytes of statistics and event

logs in step with day on their Hadoop clusters for

unsolicited mail detection, business intelligence and

different sorts of optimization.

1.2 Job Execution MapReduce

MapReduce jobs are dispensed and done over more than one

machines: the map stage is partitioned into map tasks and

the reduce tasks is partitioned into reduce jobs [1].

Large Data Processing in Clusters and Data

Centers by Optimizing Makespan and Total

Completion Time of MapReduce Workloads

Dr.K.Nagi Reddy,Professor in CSE, LORDS Institute of Engineering & Technology,

Himayathsagar, Hyderabad, India

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 119

Fig1. MapReduce Execution flow under different job

orders

Each map task processes a logical split of the input

information that generally resides on a distributed file

system. The map task applies the person-defined map

feature on every record and buffers the resulting output.

This intermediate statistics is hash-partitioned for the

exceptional reduce tasks & written to the local hard disk of

the worker executing the map task. The reduce stage

consists of 3 phases: shuffle, sort and reduce phase. In the

shuffle phase, the map responsibilities fetch the intermediate

data documents from map tasks, thus following the “pull”

model [3]. In the sort phase, the intermediate documents

from all of the map tasks are taken care of. An outside

merge type is utilized in case the intermediate records do no

longer match in reminiscence. After all the intermediate

facts are shuffled, a final skip is made to merge a lot of

these looked after files. Thus, the shuffle and type stages are

interleaved. Finally, within the map phase, the sorted

intermediate facts (within the form of a key and all its

corresponding values) is exceeded to the consumer-defined

reduce characteristic. The output from the map

characteristic is usually written again to the dispensed

record machine [1]. In fig1, the nonoverlap computation

constraint between map and reduce tasks of a MapReduce

job, ensuing in special aid utilizations for map/lessen slots

below exclusive job submission orders for batch jobs.

Job scheduling in Hadoop is performed with the aid of the

task master, which manages some of employee nodes inside

the cluster. Each employee has a set wide variety of map

and reduce slots, that can run responsibilities. The variety of

map and reduce slots is statically configured (commonly to

1 or in keeping with middle). The people periodically ship

heartbeats to the master to report the wide variety of free

slots and the development of the responsibilities that they're

currently running. Based at the availability of unfastened

slots and the rules of the scheduling coverage, the grasp

assigns map and reduce tasks to slots inside the cluster [10],

[1], [12].

2. RELATED WORK

While MapReduce has demonstrated a prevalent execution

display for expansive cluster analysis, as of late, numerous

associations have begun to share their MapReduce (Hadoop)

groups among various clients, which run a blend of bunch

and short intuitive employments [3]. To empower this

utilization display, Matei Zaharia, Dhruba Borthakur,

Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker and

Ion Stoica have proposed FAIR [2], a reasonable scheduler

that gives disengagement, ensures a base offer to every

client (work), and accomplishes measurable multiplexing.

Amid its underlying arrangement, we have distinguished

two parts of MapReduce-information: region and errand

relationship-which extensively hurt FAIR's throughput. To

address this issue they have created two basic yet hearty

procedures: postpone booking and duplicate process part.

Utilizing a wide cluster of examinations they have

demonstrated that FAIR accomplishes disconnection, low

reaction time, and high throughput.

Abhishek Verma, Ludmila Cherkasova and Roy H.

Campbell [3], considered the issue of finding a calendar that

limits the general culmination time of a given arrangement

of autonomous MapReduce occupation. They composed a

novel system and another heuristic, called Balanced Pools

that effectively use attributes and properties of MapReduce

occupations in a given workload for developing the

streamlined activity plan. As of now, they are assessing this

heuristic with a wide range of MapReduce workloads to

quantify achievable execution picks up. Information

investigation errands are frequently determined with more

elevated amount SQL-type reflections like Pig and Hive [5],

which may bring about MapReduce employments with

conditions.

Parag Agrawal, Daniel Kifer and Christopher Olston [4], [9]

examined how to plan occupations that can share look over

a typical arrangement of info documents. The objective is to

amortize costly document checks crosswise over numerous

occupations, however without excessively harming singular

employment reaction times. Their approach constructs a

straightforward stochastic model of employment entries for

each info document, and considers foreseen future

occupations while planning employments that are right now

enqueued. The main idea of authors is: if an enqueued job J

requires checking a big size file F, and forecast the close

term access of extra jobs that likewise check F, at that point

it might made sense to delay J if job J has not already in

queue too long and other, less sharable, occupations are

accessible to run. They formalized the issue and determined

a basic and compelling booking approach, under the target

of limiting apparent hold up time (PWT) for culmination of

client occupations.

3. FRAMEWORK

3.1 Overview of the Proposed System

The main aim of this paper is to improve the performance of

the MapReduce workload by minimizing the makespan as

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 120

well total completion time. Here, the makespan and total

completion time both are the performance metric for the

MapReduce workloads.

Fig2. MapReduce jobs execution in a cluster by

Makespan_ Johnson Rule (MK_JR)

These two metrics are performed based on Johnson Rule

(JR) as shown in figure 2.

Makespan:

The definition of makespan is that the time period for the

first process until the completion of the closing activity for

a hard and fast of jobs. It considers the computation time of

jobs and is often used to degree the overall performance and

utilization performance of a system.

Total Completion Time:

The general final touch time is called the sum of finished

time durations for all jobs for the reason that begin of the

first job. It is a generalized makespan with queuing time

(i.e., waiting time) protected. We can use it to degree the

delight to the gadget from a unmarried process’s perspective

thru dividing the full final touch time by the number of jobs

(i.e., average final time).

To optimize the makespan and total completion time, we

proposed two algorithms such as;

1. Optimized Job Ordering algorithm

2. Optimized Job Ordering and Slot Configuration

algorithm

3.2 Optimized Job Ordering Algorithm

 (MK_SF_JR)

Inputs:

MapReduce workloads (jobs), Map slots, reduce

slots

Output:

 Optimized job submission order

Procedure:

1. Estimate the map-phase processing time and reduce-

phase processing time of each job

2. To order the jobs, partition the job set into two subsets

such as, J1 and J2

3. Here, J1 = (Processing time of Map-phase < Processing

time of Reduce-phase) and J2 = (Processing time of

Map-phase > Processing time of Reduce-phase)

4. Order all jobs into job set, using increasing and

decreasing order based on condition of job sets.

5. Make all optimized ordered job set

6. Estimate the makespan of all slots of Map and Reduce

7. Compare estimated makespan with mini-makespan

8. If (mini-makespan>makespan) then makespan = mini-

makespan

Output: Optimized Makespan with submission order

Given a MapReduce workload and the total number of slots,

an sensitive method is to search & evaluate all combinations

of job submission orders & map/reduce slot configurations

exhaustively, as shown in Algorithm. It produced the

optimal execution plan for makespan optimization.

This algorithm can produce the minimized makespan with

ordered jobs. To get the optimized makespan, we have to

estimate the makespan with minimized makespan and after

that we can compare the makespan values. If (mini-

makespan>makespan) then makespan = mini-makespan.

3.3 Optimized Slot Configuration and Job

 Ordering Algorithm(MK_TCT_SF_JR)

Inputs:

MapReduce workloads (jobs), Map slots, reduce

slots

Output:

 Optimized job submission order with slot

configuration

Procedure:

9. Estimate the map-phase processing time and reduce-

phase processing time of each job

10. To order the jobs, partition the job set into two subsets

such as, J1 and J2

11. Here, J1 = (Processing time of Map-phase < Processing

time of Reduce-phase) and J2 = (Processing time of

Map-phase > Processing time of Reduce-phase)

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 121

12. Order all jobs into job set using increasing and

decreasing order based on condition of job sets.

13. Make all optimized ordered job set

14. Estimate the makespan of all slots of Map and Reduce

15. Estimate (Makespan, total completion time (TCT)) of

map and reduce

16. Compare estimated makespan with mini-makespan

17. If (mini-makespan>makespan) then makespan = mini-

makespan

18. TCT = Mini-TCT

Output: Optimized job submission order with slot

configuration

The above slot configuration rule is a bi-criteria

optimization algorithm for makespan and total completion

time with considerion for slot configuration optimization.

This algorithm optimizes two metrics named as makespan

as well as total completion time simultaneously for those

workloads which contains lots of small jobs.

4. EXPERIMETAL RESULTS

We evaluate our algorithms with the average execution time

for map and decrease tasks. Particularly, we validate that it

is suitable for using average execution time in our

algorithms by means of showing that the impact of various

venture execution time is minor. For each process, we

estimated its average project execution time.

Fig3. Makespan speedup under different number of

jobs

For makespan (or general total time), we normalized it by

the usage of makespan speedup (or total completion time

speedup), defined as the ratio of makespan (or overall

finishing touch time) from the unoptimized case to that from

the targeted activity order. Therefore, the larger speedup

shows the better overall performance for the detailed job

order as shown in fig.3.

Fig4. Total completion time speedup under different

number of jobs

Moreover, there is a slight drop in makespan speedup for

MK_TCT_JR in comparison to MK_JR, sacrificing a bit

performance improvement in makespan for a good total

completion time as shown in fig4. We can observe the total

completion time of the different mapreduce workloads.

5. CONCLUSION

We conclude that in this paper, we proposed job ordering

optimization algorithm & MapReduce slot configuration

optimization algorithm. We observed that full of completion

time may be terribly difficult to get the most suitable

makespan, consequently, we further suggest a new greedy

process ordering set of rules and a map/lessen slot

configuration set of rules to limit the makespan and total of

completion time collectively.

REFERENCES

[1] Shanjiang Tang, Bu-Sung Lee, Bingsheng He,

"Dynamic Job Ordering and Slot Configurations for

MapReduce Workloads", DOI

10.1109/TSC.2015.2426186, IEEE Transactions on

Services Computing

[2] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker and Ion Stoica, “Job

Scheduling for Multi-User MapReduce Clusters” April

30, 2009

[3] Abhishek Verma, Ludmila Cherkasova and Roy H.

Campbell, "Two Sides of a Coin: Optimizing the

Schedule of MapReduce Jobs to Minimize Their

Makespan and Improve Cluster Performance".

[4] Parag Agrawal, Daniel Kifer and Christopher Olston,

“Scheduling Shared Scans of Large Data Files”, VLDB

‘08, August 24-30, 2008, Auckland, New Zealand.

[5] P. Dutot, L. Eyraud, G. Mounie, D. Trystram. Bi-

criteria Algorithm for Scheduling Jobs on Cluster

Platforms, SPAA, pp. 125-132, 2004

[6] C. Rajendran. Two-Stage Flowshop Scheduling

Problem with Bicriteria. Journal of the Operational

Research Society, vol. 43, pp. 871-884, 1992.

[7] C. Oguz, M.F. Ercan, T.C.E. Cheng, Y.F. Fung, ˘

Heuristic algorithms for multiprocessor task scheduling

http://www.jetir.org/

© 2018 JETIR October 2018, Volume 5, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR1810799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 122

in a two-stage hybrid flow-shop, European Journal of

Operational Research, Vol. 149, pp. 390-403, 2003.

[8] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu. Starfish: A Self-tuning System

for Big Data Analytics. In CIDR, pages 261C272, 2011.

[9] S. Rao, R. Ramakrishnan, A. Silberstein, M.

Ovsiannikov, and D. Reeves. Sailfish: a framework for

large scale data processing, SoCC 2012

[10] H. Herodotou and S. Babu, Profiling, What-if Analysis,

and Costbased Optimization of MapReduce Programs.

in Proc. of the VLDB Endowment, Vol. 4, No. 11,

2011.

[11] K. Howard, S. Siddharth and V. Sergei. A model of

computation for MapReduce, Proceedings of the

Twenty-First Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 938-948, 2010.

[12] P.F. Dutot, G. Mounie, and D. Trystram. Scheduling

parallel tasks approximation algorithms. In J.T. Leung

(ed.), Handbook of Scheduling: Algorithms, Models,

and Performance Analysis. Chapman Hall, CRC Press,

2004.

[13] P. Sanders, J. Speck. Efficient Parallel Scheduling of

Malleable Tasks. IPDPS, pp. 1156-1166, 2011.

[14] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein.

MapReduce online. In Proceedings of the 7th USENIX

conference on Networked systems design and

implementation, pp. 21C21, 2010.

[15] S.J. Tang, B.S. Lee, and B.S. He. MROrder: Automatic

Job Ordering Optimization for Online Hadoop Clusters,

Euro-Par 2013.

http://www.jetir.org/

